

Homework and Problem Solving

Student Book
 - Homework
 - Leveled Problem Solving

Visit relvcetion Place www.eduplace.com/kids

Copyright © by Houghton Mifflin Company. All rights reserved.
No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying or recording, or by any information storage or retrieval system without the prior written permission of Houghton Mifflin Company unless such copying is expressly permitted by federal copyright law. Address inquiries to School Permissions, Houghton Mifflin Company, 222 Berkeley Street, Boston, MA 02116.

Printed in the U.S.A.

ISBN 10: 0-618-96132-1
ISBN 13: 978-0-618-96132-0
\qquad
\qquad

Hands On: Find Prime Numbers

CA Standard CII NS 1.4

Can Jules arrange 8 blocks in one or more rows with an equal number of blocks in each row? To find out, decide whether 8 is prime or not prime.

Prime numbers have exactly two different factors: 1 and itself.		
Is 8 a prime number?	8 has more than two factors (1 and itself), so it is not a prime number.	
Ask yourself: How many ways could I arrange 8 tiles?		

Decide if the number is prime or not prime. You can draw arrays or use your completed table.

1. 6
2. 11
3. 27
4. 42
5. 19
6. 31
7. 24
8. 37
9. 13

Spirci Review (Grade 4, Chapter 7, Lesson 2) KEY 4 AF 1.2, 4 AF 1.3
Simplify.
10. $4+(5-2)$
11. $(42-27) \times 2$
12. Forty-five students were on a bus on the way home from school.

Twelve students got off the bus at the first stop, how many people are now on the bus including the bus driver?
\qquad

Hands On: Find Prime Numbers

Decide if the number is prime or not prime. You can draw arrays or use your completed table.

1. Look at the array for the number 5 . Is 5 prime or not prime?
\qquad
2. Mr. Kelvin wants to arrange 17 tiles into equal rows and columns, but he continues to have an extra tile no matter how he arranges them. Why is Mr . Kelvin having this problem?
3. In Mrs. Kendall's class the desks are arranged in 6 rows of 6 desks. How many desks are in Mrs. Kendall's class, and is the number prime or not prime? Explain.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Find Factors of a Number

Can Jules arrange 9 blocks in one or more rows with an equal number of blocks in each row? To find out, decide whether 9 is prime or not prime.

Different Ways to Find Factors of 9	
Way 1 Draw all the ways you can arrange	Way 2 Use division
9 squares in an array.	Divide by 1.
	$9 \div 1=9$
	1 and 9 are factors of 9 .
	Divide by 3
	$9 \div 3=3$
	3 is a factor of 9 .
Solution: The factors of 9 are 1,3 and 9.	, 9 is a composite number.

Draw arrays to find the factors of each number. Write if the number is prime or composite.

1. 9
2. 16
3. 20

Use division to find the factors of each number. Then write if the number is prime or composite.
4. 42
5. 45
6. 49

Spiral Review (Grade 4, Chapter 7, Lesson 2) KEY 4 AF 1.2, 4 AF 1.3

Simplify.
7. $8+(4 \times 2)$ \qquad 8. $25-(5+2)$
\qquad
9. Calvin buys 7 baseball cards at the Cards Galore store and then gives 1 to his brother. If Calvin already owned 16 baseball cards, how many cards does Calvin now have? \qquad

Find Factors of a Number

Solve problems 1-6.

1. I am a counting number that has more than two different types of factors. Am I a prime number or composite number?
2. The sum of my ones and tens digit is 10. My tens digit is greater than my ones digit. I am a prime number. What number am I?
3. Mr. Jenkin's age is a composite number. The number in the ones place is the product of 2×4. The number in the tens place is the difference of half a dozen from one dozen. How old is Mr. Jenkins?
\qquad
\qquad

Prime Factorization

Write the prime factorization of 24.

Step 1 Write 24 as the product of 2 factors.

Step 2 Write the factors of each composite factor.

Step 3 Write the prime factors.
$24=2 \times 2 \times 2 \times 3$

Solution: The prime factorization of 24 is $2 \times 2 \times 2 \times 3$

Complete the factor tree. Then write the prime factorization.

1.

2.
\times \square \times
\qquad
Write the prime factorization of each number. If the number is prime, write prime.
3. 28
4. 23
5. 30
6. 42
7. 65
8. 56

Spiral Review (Grade 4, Chapter 11, Lesson 4) 4 NS 3.3
Simplify.

13. 185×32

14. 340×28
15. In the school library, there were 33 science books on each of the 17 shelves located in the science section. How many science books does the library own?

Prime Factorization

Use prime factorization to solve problems 1-6.

1. Complete the factor tree for the number 8.

2. Which number between 20 and 29 has 2 and 3 in its prime factorization?
3. Nathan bought a sandwich for $\$ 5.25$, a soda for $\$ 1.50$, and a bag of popcorn for $\$ 2.25$. What is the prime factorization of the total amount he spent for his lunch?
4. Rita's age is a prime number between 5 and 10. How old is Rita?
5. Which number between 29 and 39 has three different prime factors? What is the prime factorization of this number?
6. The basketball team scored points by making 8 free throws, worth one point each. The team also made 14 baskets, worth 2 points each. How many total points did the team score and what is the prime factorization of the score?
\qquad

Exponents and Prime Factorization

CA Standards
KEY NS 1.4, NS 1.3

Use exponents to write the prime factorization of 32.			
Step 1 Write 32 as the	Step 2	Write the factors of	Step 3 I Identify the base
product of 2 factors.	each composite factor.	or repeated factor. Count how many times the base is repeated to identify the	
exponent.			
Solution: $2^{5}=32$			

Write the prime factorization of each number. Use exponents if possible. If the number is prime, write prime.

1. 28
2. 23
3. 64
4. 30
5. 50
6. 56

Write each expression using exponents.
7. $2 \times 2 \times 2$
8. $6 \times 6 \times 6 \times 6$
9. $4 \times 4 \times 4$

Spiral Review (Grade 4, Chapter 11, Lessons 3-4) NS 3.2

Add.
10. $\frac{1}{5}+\frac{2}{5}=$ \qquad 11. $\frac{2}{4}+\frac{2}{4}=$ \qquad
12. For breakfast, Madison ate $\frac{1}{3}$ of the granola bar in the cabinet. After school, Madison ate another $\frac{1}{3}$ of the bar. How many granola bars did Madison eat?

Exponents and Prime Factorization
 CA Standards KEY NS 1.4, NS 1.3

Use exponents and prime factorization to solve problems 1-6.

1. Maria bought 4 boxes of muffins with 16 muffins in each box. Write an expression using exponents to find how many muffins she bought.
2. Which numbers between 40 and 49 have 2 and 3 in their prime factorization? Use exponents to write the prime factorization of each number.
\qquad
\qquad
3. Four students bought school supplies. Each student filled their pencil boxes with 5 pencils, 2 erasers, 2 highlighters, and 1 glue stick. Write an expression to find how many supplies were purchased by all four students. Then, use exponents to write the prime factorization of this number.
\qquad
\qquad
\qquad
\qquad
4. The Davis' backyard measures $40 \mathrm{ft} \times$ 90 ft . Find the area of their backyard and show how the area could be written using exponents.
5. Tony said the prime factorization of 72 is $2^{3} \times 3^{3}$. Explain what Tony's mistake was. Then find the correct answer.
\qquad
\qquad
\qquad
\qquad
11
38
11
24
/
22
\qquad
\qquad

Common Factors and Greatest Common Factors

CA Standards

CEY NS 1.4, MR 2.4

Different Ways to Find the GCF of 15 and 20	
Way 1 Make a list.	Way 2 Use prime factorization.
15: $1,3,5,15$	$15=3 \times 5$
$20: 1,2,4,5,10,20$	$20=2^{2} \times 5$
Solution: The GCF is 5.	

List the factors of each number. Circle the common factors. Then find the greatest common factor of the numbers.
\qquad

1. 16
2. 24 \qquad
42 \qquad 56 \qquad

Write the prime factorization using exponents of each number. Then find the greatest common factor (GCF) of the numbers.
3. 24 \qquad
36 \qquad
4. 21 \qquad
56 \qquad

Spiral Review
(Grade 4, Chapter 13, Lesson 1) 4 NS 3.2
Divide.
5. $172 \div 2=$ \qquad
6. $228 \div 4=$
\qquad
7. There were 335 packages of candy that were ready to ship to a local candy store. Each box can hold 5 packages of candy. How many packages of candy are in each box? \qquad

Common Factors and

CA Standards
KEY NS 1.4, MR 2.4

Use common factors and greatest common factors to solve problems 1-6.

1. Two numbers between 40 and 50 have a greatest common factor of 7 . The digits of one number have a sum of 6 . The digits of the other number have a sum of 13. What are the two numbers?
2. Ms. Booth is sewing dresses. She has 16 red buttons and 24 blue buttons. Each dress will have the same number of blue and red buttons. Using all the buttons, what is the greatest number of dresses Ms. Booth can sew?
3. Brian's family plans to travel 120 miles before lunch and 222 miles after lunch. They want to stop an equal number of times before lunch and after lunch. How many stops can they take on each part of the trip? How many miles will be between each stop before lunch and how many miles after lunch?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Model $\frac{3}{4}$ in three ways.
Shaded model

Draw a shaded model for each fraction.

1. $\frac{2}{3}$
2. $\frac{5}{7}$
3. $\frac{3}{10}$

Draw a number line and show the position of each fraction.
4. $\frac{2}{5}$
5. $\frac{7}{5}$
6. $\frac{11}{5}$

Draw a model to show each fraction as a division expression. Write the division expression.
7. $\frac{6}{2}$
8. $\frac{5}{3}$

Spiral Review (Chapter 1, Lesson 4) NS 1.3, KEY NS 1.4

Find the prime factorization for each number. Use exponents.
9. 24 \qquad
10. 56 \qquad 11. 48 \qquad
12. A teacher wants to write 15 problems on the board. How can he write the problems in equal rows?

Hands On: Represent Fractions

Solve questions 1-6.

1. Carol rides the school bus on Mondays, Tuesdays, and Fridays. On Wednesdays and Thursdays, her mother drives her to school. Write a fraction and shade the model shown to show how many days a week she rides the bus.

2. Tony drew the number line shown and says it represents the fraction $\frac{2}{4}$. Is Tony correct? Explain why or why not.

\qquad
\qquad
\qquad
3. Each day, Paul has 4 hours of free time after school. On Monday and Wednesday, he watches television for one hour. On Tuesday and Thursday, he doesn't watch television. On Friday he watches television for two hours. Write fractions to show how much of Paul's free time each day is used for watching television.
\qquad
\qquad
4. The table below shows the amount of time Tiffany spends on different after school activities each week. She spends 8 hours on activities in all. Write a fraction to show how much of her activity time Tiffany spends at her music lessons.

Tiffany's After School Activities Day Activity Hours Monday music lesson 1 Tuesday scout meeting $1 \frac{1}{2}$ Wednesday music lesson 2 Thursday science club 1 Friday softball practice $2 \frac{1}{2}$		

2. Christine has 12 cookies to share with her 6 friends. If she gives each friend an equal number of cookies, how many cookies will each friend get? Write a division sentence to show your answer.
3. Andreas baked 2 small loaves of cinnamon raisin bread, each with 10 slices. He used 4 slices from each loaf to make toast. Write a fraction to show how many slices of bread Andreas used. Then make a shaded model.

$$
4+2-1+2
$$

\qquad
\qquad

Fractions and Mixed Numbers

Improper fractions and Mixed Numbers

Divide to change an improper fraction to a mixed number.

Multiply and add to change a mixed number
to an improper fraction.

$$
\begin{array}{r}
2 \frac{1}{4}=\frac{(4 \times 2)+1}{4}=\frac{9}{4} \\
\text { So } 2 \frac{1}{4}=\frac{9}{4}
\end{array}
$$

Study this number line. Write each missing fraction.

$$
\begin{aligned}
& \frac{9}{4}=\frac{2}{49} \\
& \frac{-8}{1}
\end{aligned} \quad \text { So } \frac{9}{4}=2 \frac{1}{4}
$$

1.

Write each improper fraction as a mixed number or a whole number.
2. $\frac{15}{4}$
3. $\frac{19}{5}$
4. $\frac{21}{7}$
5. $\frac{20}{9}$

Write each mixed number as an improper fraction.
6. $1 \frac{4}{5}$
7. $3 \frac{1}{3}$
8. $5 \frac{5}{6}$
9. $2 \frac{7}{8}$

Spiral Review (Chapter 1, Lesson 4) KEY NS 1.4, MR 2.3

Find the prime factorization for each number. Use exponents.
10. 72 \qquad 11. 90 \qquad 12. 23
\qquad
13. Write the prime factorization of 96 in two ways.

Fractions and Mixed Numbers

CA Standards GEY NS 1.5, MR 2.6

Solve problems 1-6.

1. Lucinda bought 21 sodas for a class party. The sodas come in 6-packs. Write the number of 6-packs that Lucinda has as a mixed number.
$\frac{21}{6}=21 \div 6$
\qquad
2. After a party, there were $3 \frac{5}{8}$ pizzas left over. Each pizza was cut into 8 slices.
Write this number as an improper fraction. How many slices of pizza were left?
3. Dwayne lent his sister $16 \frac{4}{5}$ of a dollar. How much money did Dwayne lend his sister?
\qquad

Equivalent Fractions and Simplest Form

To find equivalent fractions		
Multiply the numerator and denominator by the same number.	Divide the numerator and denominator by a common factor.	Simplest form: Divide numerator and denominator by greatest common factor (GCF).

Complete.

1. $\frac{5}{8}=\frac{10}{\square}$
2. $\frac{12}{15}=\frac{\square}{5}$
3. $\frac{9}{18}=\frac{1}{\square}$
4. $\frac{2}{3}=\frac{\square}{9}$
5. $\frac{7}{10}=\frac{\square}{100}$
6. $\frac{21}{27}=\frac{7}{\square}$
7. $\frac{6}{30}=\frac{3}{\square}$
8. $\frac{10}{25}=\frac{\square}{50}$

Simplify each fraction.
9. $\frac{22}{4}$
10. $\frac{20}{16}$
11. $\frac{22}{32}$
12. $\frac{45}{36}$
13. $\frac{35}{15}$
14. $\frac{42}{48}$
15. $\frac{30}{9}$
16. $\frac{40}{16}$

Spiral Review (Chapter 1, Lesson 4) NS 1.3, KEY NS 1.4
Find the prime factorization for each number. Use exponents if possible.
17. 64 \qquad 18. 81 \qquad 19. 94 \qquad
20. How could you find the number with the prime factorization of $2^{2} \times 3^{2}$?
\qquad

Equivalent Fractions and Simplest Form

Solve problems 1-6.

1. Harold has been given this list of equivalent fractions: $\frac{6}{14}, \frac{12}{28}, \frac{3}{7}$. He is supposed to choose the fraction that is in simplest form. Which one should Harold choose?
2. The fifth and sixth grades at Oak Street School are having a science fair. There are 50 students total and $\frac{3}{5}$ of the students are fifth grade students. How many fifth grade students are entered in the science fair?
\qquad
\qquad
3. $\frac{7}{8}$ of the animals at a shelter are cats. If there are 400 animals at the shelter, how many are cats?
4. Mary Lou said that $\frac{16}{20}$ in simplest form is $\frac{8}{10}$. What was her mistake? What is the correct answer?
5. A nurse works 2 out of every 3 days. Write fractions to tell how many days she works out of the following total days: 6 , 9, 12, 15

$$
\frac{2}{3}, \frac{}{6}, \frac{}{9}, \frac{}{12}, \frac{}{15}
$$

6. Trish walks 15 blocks to school. If she walks $\frac{2}{10}$ of the way by herself, how many blocks does she walk by herself? How many blocks does she walk with a friend.

Compare Fractions

Which is greater, $\frac{4}{5}$, or $\frac{5}{6}$?

Way 1 Use a number line.

Solution: $\frac{4}{5}<\frac{5}{6}$.

Way 2 Find a common denominator.

$4 \times 6=24$, so $\frac{4}{5}=\frac{24}{30}$.
$5 \times 5=25$, so $\frac{5}{6}=\frac{25}{30}$.

Compare these fractions. Use a number line to help. Write $<,>$, or $=$ for each \longrightarrow.

1. $\frac{3}{10}$

2. $\frac{5}{6}$$\frac{6}{7}$
3. $\frac{3}{9} \bigcirc \frac{4}{12}$
4. $\frac{4}{5} \bigcirc \frac{3}{4}$
5. $\frac{7}{10} \bigcirc \frac{6}{9}$

Compare these fractions. Find a common denominator. Write $<,>,=$ for each \longrightarrow.
6. $\frac{1}{4} \bigcirc \frac{5}{20}$
7. $\frac{5}{8} \bigcirc \frac{4}{7}$
8. $\frac{6}{10} \bigcirc \frac{9}{12}$
9. $\frac{4}{6} \bigcirc \frac{3}{4}$
10. $\frac{12}{28} \bigcirc \frac{3}{7}$
11. $\frac{2}{5} \bigcirc \frac{2}{9}$
12. $\frac{11}{25} \bigcirc \frac{24}{50}$
13. $\frac{2}{5} \bigcirc \frac{5}{12}$
14. $\frac{6}{11} \bigcirc \frac{4}{9}$
15. $\frac{3}{15} \bigcirc \frac{2}{10}$

Spiral Review (Chapter 1, Lesson 5) KEY NS 1.4, MR 2.4
Find the greatest common factor (GCF) of the numbers.
16. 15,45 \qquad 17. 12,28 \qquad 18. 30,40 \qquad
19. Nancy wants to plant 16 tulip bulbs and 24 daffodil bulbs. She wants to plant rows of tulips and rows of daffodils. She wants the same number of flowers in each row. What are the longest rows of flowers she can plant?

Compare Fractions

Solve problems 1-6.

1. Dan and Maisie were practicing their long jumps for a track meet. For their first jump, Dan jumped $\frac{7}{8}$ of a meter and Maisie jumped $\frac{5}{6}$ of a meter. Mark the lengths of their jumps on the number lines. Who jumped further?
Dan

Maisie

3. Sebastian and Ellie each have a bag with the same number of marbles. Sebastian took out $\frac{2}{5}$ of his marbles for a game. Ellie took out $\frac{5}{7}$ of her marbles. Who took out more marbles?
5. Victoria, Sean, and Maura were picking apples at a farm. Victoria picked $\frac{3}{5}$ of a basket, Sean picked $\frac{3}{4}$ of a basket, and Maura picked $\frac{1}{5}$ of a basket. Write the names of the people who picked apples in order from the greatest amount picked to the least amount picked.

Problem Solving: Compare Data Sets

The table shows the number of peanut and popcorn bags sold at the zoo concession stand in one week. Which snack had a greater fraction sold on Saturday?

Snack	Number of Bags Sold in One Week	Number of Bags Sold on Saturday
peanuts	40	10
popcorn	60	20

10 out of 40 bags of peanuts
$\frac{10}{40}=\frac{1}{4}$

20 out of 60 bags of popcorn

$$
\frac{20}{60}=\frac{1}{3}
$$

Since $\frac{1}{3}$ is greater than $\frac{1}{4}$, the bags of popcorn had a greater fraction sold on Saturday.

Solve. Explain why your answer makes sense.

1. The snack stiop sold 50 hamburgers and 75 cheeseburgers last week, 25 of each were sold on Thursday. Which had a greater fraction sold on Thursday?
2. The snack shop sold 40 popsicles on Monday and 25 on Tuesday. On Monday 10 of the popsicles sold were orange and on Tuesday 5 of the popsicles sold were orange. Which day had the greatest fraction of orange popsicles?

Spiral Review (Chapter 2, Lesson 4) KEY NS 1.5, MR 1.1

Compare. Write $<,>$, or $=$ for each

3. $\frac{2}{9} \bigcirc \frac{3}{4}$
4. $\frac{4}{12} \bigcirc \frac{2}{6}$
5. Janice asked visitors at the zoo about their favorite animal. One third of the people chose giraffes. Three sixths of the people chose lions. Which animal was chosen by more people?

Problem Solving: Compare Data Sets

CA Standard

 MR 1.2, SDAP 1.3
Solve. Explain why your answers make sense.

1. In the Reptile House, Kendra counted 2 out of 4 lizards that had dark green stripes and 5 out of 8 snakes that had dark green stripes. Which reptile had a greater fraction of dark green stripes?

2. A male prairie dog ate 8 out of 12 pounds of food and a female prairie dog ate 4 out of 5 pounds of food. Which prairie dog ate the greatest fractional amount of food?
3. Kate has 90 stickers in her sticker collection. Of those stickers 36 are bird stickers, 9 are mammal stickers, and the rest are reptile stickers. How many reptile stickers are in her collection? What fraction of her collection are reptile stickers?
4. One third of the hippos were in the water in the morning and four sixths of the hippos were in the water in the afternoon. At which time was the greatest fraction of the hippos in the water?

5. Rita spent $\$ 25$ at the zoo and Sean spent $\$ 20$. At the gift shop, Rita spent $\$ 15$ and Sean spent $\$ 10$. Who spent the greatest fraction of money at the gift shop?
6. The python snake climbed 10 feet up a 12 foot tree and the boa constrictor snake climbed 16 feet up an 18 foot tree. Write the fraction of the tree each snake climbed. Simplify the fractions and compare the distances.
\qquad
\qquad
\qquad
\qquad Date \qquad

Hands On: Represent Whole Numbers and Decimals

Decimal Notation	Fraction Notation	Word Form	Model with Bills and Coins	Money Amount
5.6	$5 \frac{6}{10}$	five and six tenths	$\begin{gathered} 6, \sqrt{6} \\ (-4)(2) \end{gathered}$	\$5.60
12.75	$12 \frac{75}{100}$	twelve and seventyfive hundredths		\$12.75

Write the word form as a money amount.

1. six and thirty-five hundredths
2. seventeen and four tenths
3. ten and ninety-nine thousandths

Model each number using money. Use the fewest number of bills and coins.
4. 3.05
5. 10.70
\qquad
\qquad
6. 16.32
\qquad
\qquad
Spiral Review
(Chapter 1, Lesson 4) KEY NS 1.4

Write the prime factorization of each number using exponents.
7. 15 \qquad 8. 60
9. 28 \qquad 10. 49
\qquad
11. Ian says that the prime factorization of 12 is 3×4. Is he correct? Explain.

Hands On: Represent Whole Numbers and Decimals

Solve Problems 1-6.

1. Jessica's lunch cost $\$ 4.89$. What is the value of the digit in the tenths place?
2. What is the value of the bills and coins using whole numbers and decimals?

3. Mr. Harris bought a basketball for $18 \frac{3}{10}$ dollars. He gave the cashier a $\$ 20$ bill. How much money did he receive as change?
\qquad
\qquad
4. Briana bought a bag of popcorn for two and fifty-five hundredths dollars. Marissa bought a soda for $1 \frac{89}{100}$ dollars. Kim spent 2.05 dollars on a box of candy. Who spent the most amount of money? How much did she spend?
\qquad
\qquad

Place Value Through Billions

You can write numbers in different ways. 312,501 can be written in:	
Standard From	Use digits-312,501
Word Form	Use words-three hundred twelve thousand, five hundred one
Short Word Form	Use digits and words-312 thousand, 501
Expanded Form	Use digits to show the value of each place $300,000+10,000+2,000+500+1=(3 \times 100,000)+$ $(1 \times 10,000)+(2 \times 1,000)+(5 \times 100)+(1 \times 1)$

Write each number in standard form.

1. 415 thousand, 25
2. $800,000+4,000+$ $60+2$
3. $100,000+900+20+3$

Write each number in expanded form using exponents.
4. 702,946
5. 8,325
6. At times, the earth is two hundred thirty-eight thousand, eight hundred fifty-seven miles from the moon. Write this number is standard form.

Spiral Review (Chapter 1, Lesson 4) NS 1.3, KEY NS 1.4

Write the prime factorization of each number using exponents.
7. 24 \qquad 8. 32 \qquad 9. 45 \qquad 10. 54
\qquad
11. The area of a square is 7×7 square inches. Write this using an exponent.
\qquad
\qquad

Place Value Through Billions

Solve problems 1-6.

1. What is the value of the 5 in the number 285,467?

Thousands		Ones			
hundreds	tens	ones	hundreds	tens	ones

3. The table shows the most popular female names. Identify the most popular name and write the number in word form.

Female Names	
Name	Number of People
Patricia	153,834
Mary	376,915
Linda	148,386

\qquad
\qquad
\qquad
5. The toy drive raised $\$ 25,460$ in toys and the food drive raised $\$ 17,350$ in food. Write the total amount of money raised in expanded form using exponents.
\qquad
\qquad
\qquad

Place Value Through Thousandths

Write each decimal in standard form.

1. twelve and fifty-four hundredths \qquad 2. six and sixteen thousandths \qquad
2. one hundred sixty-two thousandths \qquad 4. twenty and five hundredths \qquad
Write each decimal in word form.
3. 23.6
4. 8.002
\qquad
\qquad
5. 10.01
6. 2.112
\qquad
\qquad
\qquad
\qquad

Spiral Review (Chapter 3, Lesson 2) NS 1.0, NS 1.3

Write each number in standard form.
9. $40,000+5,000+40+2$ \qquad
10. $100,000+3,000+500+70+9$ \qquad
11. The water at Yosemite Falls descends 2,425 feet. Write this number in expanded form.

Place Value Through Thousandths

Solve problems 1-6.

1. A candy bar costs $\$ 0.67$. How would the cost of the candy bar be read as a decimal in word form?

ones	tenths	hundredths	thousandths

3. Tyrant Flycatchers are among the many songbirds that live in North America. Flycatchers may weigh as little as 4.5 grams. Write this weight in word form.
4. Alex said the decimal 2.340 is read two and thirty four tenths. Marcus said Alex was wrong and the decimal is read two and three hundred forty thousandths. Who is correct? Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad

Compare and Order Whole Numbers and Decimals

CA Standards
NS 1.0, MR 2.0

Compare 6,490,232,908 and 6,495,590,028

Step 1 Write the numbers in a vertical list. Line up the numbers by place value.

$$
6,490,232,908
$$

$$
6,495,590,028
$$

Step 2 Start from the left. Compare the digits.

$$
\begin{aligned}
& 6,490,232,908 \\
& 6,495,590,028
\end{aligned}
$$

The millions place is different. 5 is greater than 0 .
Solution: 6,495,590,028 > 6,490,232,908

Compare. Write $>,<$, or $=$ for each \bigcirc.

1. 24,981
24,810
2. $734,556 \bigcirc 734,655$
3. $45,813,540 \bigcirc 48,513,450$
4. $2,198,070 \bigcirc 2,189,007$

Order each set of numbers from greatest to least.
5. 9,$254 ; 9,542 ; 9,515$
6. 18,$229 ; 18,209 ; 18,299$
7. A toy company had a profit of $\$ 259,304$ this year and $\$ 254,509$ last year. Which profit was greater? Explain.
\qquad
\qquad

Spiral Review (Chapter 2, Lesson 2) KEY NS 1.5, MR 2.6

Write each improper fraction as a mixed number or a whole number.
8. $\frac{5}{4}$ \qquad 9. $\frac{8}{5}$
10. At the bake sale, pies were cut into 8 pieces and sold by the slice. At the end of the sale, there were 11 pieces left. How much pie is left? Write your answer in different ways.

Compare and Order Whole Numbers and Decimals

Solve problems 1-6.

1. Tyra ran a race in 8.45 minutes, Heather ran in 8.52 minutes, and Marie ran in 8.50 minutes. Order their times from least to greatest. Who ran the race in the fastest time?
2. There are about $4,183,898$ people in Michigan that use the Internet. There are about $4,620,671$ people in Ohio that use the Internet. Compare the number of people in each state that use the internet using $<,>$, or $=$.
3. The amusement park sold 234,560 hot dogs and 219,450 bags of popcorn last year. This year, they sold 244,675 hot dogs and 207,480 bags of popcorn. Compare the total number of hot dogs and bags of popcorn sold each year.
4. Greg's relay team members ran a race in 3.15 minutes, 3.22 minutes, 3.45 minutes, and 3.05 minutes. Ryan's relay team members ran the same race in 3.07 minutes, 3.40 minutes, 3.25 minutes, and 3.29 minutes. What were the total times for each team? Compare to find which team had the fastest time.

Round Whole Numbers and Decimals

Round $0 . \underline{326}$ to the place indicated by the underlined digit.

Step 1 Circle the digit to the right of the underlined digit.
0.326

Step 2 If the circled digit is 5 or greater, increase the rounding place digit by 1. If the digit is less than 5 , do not change the rounding place digit. Drop all remaining digits after rounding.

Solution: 0.326 rounds to 0.3 .

Round to the place indicated by the underlined digit.
\qquad

1. $7.1 \underline{15}$
2. 34.277 \qquad
3. $0 . \underline{9} 81$ \qquad 4. 10.91 \qquad
4. $17.1 \underline{5} 6$ \qquad 6. $0.2 \underline{8} 8$ \qquad
5. 462,969 \qquad 8. $1,906,230,234$ \qquad
6. $\underline{2} 39,796$ \qquad 10. 6.03 \qquad
7. 28,334 \qquad 12. 48.290 \qquad

Spiral Review

Write each fraction in simplest form.
13. $\frac{4}{6}$ \qquad
14. $\frac{2}{8}$ \qquad
15. 16 out of 20 students are riding the bus. Write the fraction of students that are riding the bus in simplest form.
\qquad

Round Whole Numbers and Decimals

Solve problems 1-6.

1. A house costs $\$ 195,500$. Round the amount to the nearest hundred thousand.
\$195,500
2. Use data from the table to solve Problems 3-4.

2006 Middlesex County High Schools Top Five Hitters

Player	Team	Average
Javier Ordonez	Tigers	0.320
Junior Ramirez	Griffons	0.349
Kazuya Suzuki	Eagles	0.321
Mark Sweeney	Mustangs	0.340
Tony Williams	Panthers	0.333

Round Javier Ordonez's average to the nearest tenth.
5. Lacey needs to buy two presents for her sister. The first present costs $\$ 29.57$ and the second present costs $\$ 5.19$. About how much did Lacey spend on both presents?
\qquad
2. Karen rounded $\$ 14.58$ to $\$ 14.00$.

Explain why her answer is incorrect.
4. Round all of the averages to the nearest hundredth. Who had the best batting average?
\qquad
\qquad
\qquad
6. A train traveled 32,190 miles round trip last week and 32,830 miles this week. If you round each distance to the nearest ten thousand, can you determine which week the train traveled the farthest?

Problem Solving: Estimate or Exact?

Solve. Explain why you used an estimate or an exact answer.

Example 1: Need an exact answer How many more people live in San Francisco compared to Long Beach? Find the difference.	Example 2: Need an estimate About how many more people live in San Diego compared to San Jose? Use rounding rules. 1,223,400 1,200,000	Population of the 5 Largest Cities in California (2000)	
		City	Population
		Los Angeles	3,694,820
		San Diego	1,223,400
776,733	1,223,400 1,200,000	San Jose	894,943
$-\frac{-461,522}{315,211}$ people	894,943- $\frac{900,000}{300,000}$	San Francisco	776,733
		Long Beach	461,522

Use the table below to solve.

1. What is the difference in voter turnout from 2000 to 2002 ?
\qquad
\qquad
2. About how many more people voted in 2004 than in 1996 ?

National Federal Elections	
Year	Voter Turnout
2004	$122,294,978$
2002	$79,830,119$
2000	$105,586,274$
1998	$73,117,022$
1996	$96,456,345$

Spiral Review (Chapter 2, Lesson 3) KEY NS 2.3

Write each fraction in simplest form.

3. $\frac{3}{30}$
4. $\frac{2}{8}$
5. Jenny says that $\frac{5}{10}$ of her stuffed animals are bears. What is $\frac{5}{10}$ in simplest form? \qquad

Problem Solving: Estimate or Exact?

CA Standards MR 2.5, NS 1.1

Use the tables to solve. Explain why you used an estimate or an exact answer.

Mountains in the US higher than $\mathbf{1 4 , 0 0 0}$ feet	
Mountain	Height
Mt. McKinley	20,320
Mt.St.Elias	18,008
Mt.Foraker	17,400
Mt.Bona	16,500
Mt.Blackburn	16,390

Public Higher Education Costs, 2000-2005	
Year	Cost
$2000-2001$	$\$ 7,586$
$2001-2002$	$\$ 8,022$
$2002-2003$	$\$ 8,502$
$2003-2004$	$\$ 9,249$
$2004-2005$	$\$ 9,877$

For 1-4, use the Mountains in the US Higher Than 14,000 Feet table to solve.

1. How much higher is Mt. St. Elias than Mt. Bona?
$18,008-16,500=$ \qquad
2. How much shorter is Mt. Blackburn than Mt. McKinley?
\qquad
\qquad
\qquad
For 5-6, use the Public Higher Education Costs table.
3. Jason started college during the 20012002 school year and graduated during the 2004-2005 school year. How much money did Jason's education cost?
\qquad
\qquad
\qquad
4. A private college education costs about twice as much as a public college education. About how much would Jason have spent in 2001-2002 if he'd gone to a private college?
5. If you stacked Mt. Foraker, Mt. Bona, and Mt. Blackburn on top of each other, about how tall would they be? Round your answer to the nearest thousand.
\qquad
\qquad

Hands On: Fractions and Decimals

Use number lines to find the decimal equivalent of a fraction.

What is the decimal equivalent of $\frac{2}{5}$?
Step 1 Use the decimal number line and the number line marked in fifths.

Step 2 At the point of $\frac{2}{5}$, place a ruler vertically so it crosses the decimal number line and identify 0.4 as the decimal the line goes through.

Use the number line. Write each fraction as a decimal.

1. $\frac{1}{5}$

2. $\frac{5}{10}$

Spiral Review (Chapter 3, Lesson 2) NS 1.0, NS 1.3
Identify the place value of the underlined number.
3. $12, \underline{3} 47$ \qquad 4. $\underline{2} 63,530$ \qquad
5. The paper Sue wrote for English class has a total of $\underline{\underline{2}} 34,879$ letters, numbers and other characters. Identify the place value of the underlined number.

Hands On: Fractions and Decimals

Solve.

1. Brody built a tower out of blocks. Write a fraction and decimal that represents the number of white blocks.

2. Miles started with 10 brownies each day to sell at a bake sale. He sold $\frac{3}{4}$ of the brownies on Saturday and 0.8 of the brownies on Sunday. On which day did he sell more brownies?
3. Maria, Kelsey, and Rita all sold the same number of boxes of cookies. Of the boxes of cookies Maria sold, $\frac{3}{5}$ were chocolate chip. Of the boxes of cookies Rita sold, 0.5 were chocolate chip. Kelsey sold $\frac{2}{10}$ boxes of chocolate chip cookies. Who sold the most chocolate chip cookies? Explain.
\qquad
\qquad
\qquad
\qquad
\qquad

Equivalent Fractions and Decimals

Write fractions and mixed numbers as decimals.

HINT: Make the denominator a multiple of ten.

Fraction: $\quad \frac{4}{5}=\frac{8}{10}=0.8$

$$
\times 2
$$

$\times 25$
Mixed Number: $2 \frac{3}{4}=2 \frac{75}{100}=2.75$
$\times 25$

Write a decimal as a fraction or mixed number in simplest form.

Decimal less than 1 (fraction):

$$
\begin{gathered}
\div 2 \\
0.4=\frac{4}{10}=\frac{2}{5} \\
\div 2
\end{gathered}
$$

Decimal greater than 1 (mixed number):

$$
\begin{gathered}
\div 2 \\
1.6=1 \frac{6}{10}=1 \frac{3}{5} \\
\div 2
\end{gathered}
$$

Write each decimal as a fraction or mixed number in simplest form.

1. 0.75
2. 1.5
3. 2.25
4. 1.6

Write each fraction or mixed number as a decimal.
5. $\frac{3}{5}$
6. $\frac{2}{8}$
7. $\frac{14}{20}$
8. $1 \frac{3}{10}$
9. $1 \frac{4}{8}$
10. $2 \frac{2}{20}$
11. $1 \frac{4}{5}$
12. $3 \frac{1}{4}$

Spiral Revlew (Chapter 2, Lesson 2) KEY NS 1.5, MR 2.6

Write each improper fraction as a mixed number or a whole number.
13. $\frac{7}{5}$
14. $\frac{12}{10}$
15. There are 48 apple slices in the fruit salad that Ben's dad prepared for dinner. The slices were cut from apples that were sliced into 7 pieces each. That means that there were $\frac{48}{7}$ apples used. How many apples were used in the salad? Express the answer as a mixed number.

Equivalent Fractions and Decimals

CA Standard

 MR 2.3
Solve.

1. Mason lives 4.2 miles from school. He says that is equivalent to $4 \frac{1}{5}$ miles. Explain whether Mason is correct.
\qquad
\qquad
\qquad
2. Complete the chart below by finding the equivalent distances. Record the mixed numbers in simplest form.

Highest Score			
Distance	Fraction	$=$	Decimal
Sack Race		$=$	9.25 yards
Ballon Toss	$8 \frac{3}{4}$ feet	$=$	
Egg Race		5.4 feet	

5. Evan ran 2.5 miles on Saturday and 2.25 miles on Sunday. Alex ran $2 \frac{2}{5}$ miles on Saturday and $2 \frac{1}{2}$ miles on Sunday. Who ran a total of more miles?

Compare and Order Fractions and Decimals

CA Standard

UGY NS 1.5

Different Ways to Compare 2.4, $2 \frac{1}{4}$, and 2.04

Way 1: Write the mixed number as a decimal.
$2 \frac{1}{4}=2.25$
Compare the decimals.
$2.04<2.25<2.4$

Way 2: Write the decimals as mixed numbers.
$2.4=2 \frac{4}{10} \quad 2.04=2 \frac{4}{100}$
Rename with a common denominator.
$2 \frac{4}{10}=2 \frac{40}{100} \quad 2 \frac{1}{4}=2 \frac{25}{100}$
Compare the mixed numbers.
$2 \frac{4}{100}<2 \frac{25}{100}<2 \frac{40}{100}$

Compare. Write $>,<$, or $=$ for each

1. $0.6 \bigcirc \frac{1}{5}$
2. $9.08 \bigcirc 9 \frac{1}{5}$
3. $\frac{4}{5} \bigcirc 0.9$
4. $1 \frac{7}{10} \bigcirc 1.07$
5. $2.5 \bigcirc 2 \frac{1}{2}$
6. $1 \frac{13}{20} \bigcirc$
1.8
7. $3.6 \bigcirc 3 \frac{6}{100}$
8. $\frac{9}{25} \bigcirc 0.4$

Order each set of numbers from least to greatest.
9. $\frac{1}{2}, \frac{6}{10}, 0.2,0.4$
10. $\frac{3}{10}, 0.75,1.2,1 \frac{1}{10}$

Spiral Review (Chapter 3, Lesson 2) NS 1.0
Write the numbers in standard form.
11. four hundred thirty two thousandths
12. twenty five thousandths \qquad
13. Cathy's mother teaches 5 th grade math and, as a joke, wrote her friend a note saying, "Congratulations! You're $\left(4 \times 10^{5}\right)+$ $\left(2 \times 10^{4}\right)+\left(8 \times 10^{3}\right)+\left(5 \times 10^{2}\right)$ hours old." How many hours old is the friend in standard form?

Compare and Order Fractions and Decimals

CA Standard KEY NS 1.5

Sovle.

1. Jim ate $\frac{3}{8}$ of a pie and Jung ate 0.25 of the same pie. Shade the amount that Jim and Jung ate. Who ate more pie?

2. Marco is 5.5 feet tall, Steve is $5 \frac{5}{8}$ feet tall, and Susan is $5 \frac{2}{5}$ feet tall. Order the students from shortest to tallest.
3. Louis caught four fish on his fishing trip. The fish measured $7 \frac{1}{4}$ inches, 6.5 inches, $7 \frac{1}{2}$ inches, and 7.75 inches. What was the average length of the fish he caught?
\qquad

Mental Math: Fraction and Decimal Equivalents

Visualizing a number line can help to compare and order decimals and fractions.

	Compare the fractions using $>,<$ or $=$.	Order the fractions from least to greatest.		
Plot the points on the number line.	$2 \frac{8}{10}>2 \frac{1}{2}>2 \frac{2}{5}$	$2 \frac{2}{5}, 2 \frac{1}{2}, 2 \frac{8}{10}$		
A $2 \frac{8}{10}$				
B $2 \frac{2}{5}$				
C $2 \frac{1}{2}$			\quad	
:---:				

Dan has to compare fractional and decimal numbers that are in different forms. Compare each pair of numbers and write $>,<$, or $=$ for each \bigcirc. Use mental math.

1. $\frac{2}{5}$
 0.3
2. $1 \frac{1}{4} \bigcirc 1.3$
3. $4 \frac{4}{8} \bigcirc 4.75$
4. $4 \frac{1}{5}$

4.25

Use the number line to solve.

5. Write the fraction and the decimal represented by point A.
6. Write the decimal represented by point B.

Spiral Review (Chapter 3, Lesson 4) NS 1.0, MR 2.0

Compare. Write $>,<$, or $=$ for each

7. 3837.613
8. 7.3197.367
9. Beth's parents measured her height every six months and marked it in pencil on the wall in her bedroom closet. The last 3 measurements are 58.35 inches, $58 \frac{1}{4}$ inches and $58 \frac{9}{20}$ inches. Order the numbers from least to greatest.

Mental Math: Fraction and Decimal Equivalents

Sovle problems 1-6.

1. Samantha's plant grew $3 \frac{1}{4}$ inches during the month of April and 3.75 inches during the month of May. Which month did the plant grow more?

2. Jess bought $1 \frac{1}{4}$ pounds of potatoes and 1.3 pounds of onions. Did Jess buy more potatoes or onions?
3. Frank bought $4 \frac{3}{10}$ pounds of apples and 3.5 pounds of tomatoes at a Farmer's Market. His brother bought 2.75 pounds of strawberries and one $5 \frac{2}{5}$ pound squash. Who bought more at the Farmer's Market? How many pounds more?
\qquad
\qquad
4. The fence around Cameron's yard measures 10.2 feet in length and $5 \frac{3}{5}$ feet in width. What is the perimeter of the fence? Draw a picture of the fence and label the length and width. Explain how you found the answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Jonas made the pattern below using blocks. If the same pattern continues, how many squares would be in Figure 5?

Figure 1

Figure 2

Figure 3

Figure 4 each time. Make a table.

Input

Output

Figure Number	1	2	3	4	5
Number of Blocks	1	3	6	10	15

Figure 5

Solution: There will be 15 blocks in Figure 5.

Draw the next figure in the pattern. Describe the rule.
Then complete the table.

1. Figure 1 Figure 2
 Figure 3

Figure Number	1	2	3	4
Number of Rectangles	3	6	9	

Rule: \qquad
2. Figure 1

Figure 2
Figure 3

Figure Number	1	2	3	4
Number of Rectangles	8	6	4	

Rule:

Spiral Review (Chapter 2, Lesson 3) KEY NS 2.3

Write each fraction in simplest form.
3. $\frac{6}{8}$
4. $\frac{12}{16}$
5. Erin says that $\frac{10}{15}$ of her sweatshirts have cats on them. What is $\frac{10}{15}$ in simplest form? \qquad
\qquad Date \qquad

Hands On: Algebra and Patterns

Solve problems 1-6.

1. In a football game, the home team scored 1 touchdown and one extra point during every quarter. How many points did the home team have at the end of the game?
2. The coach of the soccer team brought 18 oranges to each game for the players to eat at halftime. Complete the function table to show how many oranges he bought by the end of the season. Then describe the rule.

Rule:

Game	1	2	3	4
Number of oranges	18			

5. The members of the cross-country team run 5.75 miles every day. Create a function table to show how many miles the members of the cross-country team run in 1 day, 3 days, 7 days, and 10 days. Then describe the rule.

Rule:

Days	1	3	7	10
Miles				

2. During halftime at the football game, the cheerleaders built pyramids. Complete the function table to show how many cheerleaders it took to build 5 pyramids.

Number of pyramids	1	2	3	4	5
Number of cheerleaders	3				

4. The number of people attending the school basketball games increased by 15 every game. Complete the table to show the number of people who attended the $5^{\text {th }}$ basketball game. Then describe the rule.

Rule: \qquad

Game	1	2	3	4	5
Number of people	15				

6. A student ticket to the football game costs $\$ 6.50$. Make a function table to show the cost of the tickets if a group buys $3,5,7$, and 9 student tickets. Then describe the rule.

Rule:

Tickets	3	5	7	9
Cost				

\qquad
\qquad

Simplify Expressions

Simplify this expression using the order of operations.		
$2^{3}+3 \times 4$		
Step 1	Step 2	Step 3
Simplify the numbers with exponents.	Multiply from left to right.	Add from left to right.
$\begin{gathered} 2^{3}+3 \times 4 \\ 2 \times 2 \times 2=8 \end{gathered}$	$\begin{gathered} 8+3 \times 4 \\ 8+12 \end{gathered}$	$\begin{gathered} 8+12 \\ 20 \end{gathered}$
Solution: $2^{3}+3 \times 4=20$		

Simplify.

1. $5 \times(18-9)$
2. $(21-14) \times(3+4)$ \qquad 3. $\left(27-3^{2}\right)-12$ \qquad
3. $8+(52-44)-6$ \qquad
4. $1 \times(6+8)-2$
5. $(35-15) \times(2+1)$ \qquad
6. $\left(18-2^{2}\right)+6$ \qquad 8. $12+(13-4)+5$

Spiral Review (Chapter 2, Lesson 3) KEY NS 2.3
Write each fraction in simplest form.
9. $\frac{6}{10}$
10. $\frac{15}{20}$
11. Mrs. Jones surveyed the students in her science class about their favorite food. Out of 30 students, 12 voted for Italian food. What is $\frac{12}{30}$ in simplest form? \qquad

Simplify Expressions

Simplify.

1. Which operation should be performed first? Use the order of operations to simplify this expression.

$$
3 \times(5+4)
$$

3. During basketball practice, one student made 4 baskets. Five other students made 3 baskets each. Another student made 5 baskets. The coach calculated the total number of points made by all of the students. Write an equation to find how many baskets were made in all.
4. Mr. Jenkins incorrectly solved this expression. Tell what he did wrong and give the correct answer. Show your work.

$$
\begin{gathered}
8+2^{2} \times 3-10 \\
8+4=12 \\
12 \times 3=36 \\
36-10=26
\end{gathered}
$$

\qquad
\qquad

Write and Evaluate Expressions

Derek performed an experiment for his science fair project by drawing the conclusion that for every 1 tablespoon of fertilizer used, the bean plant grew an additional 5 inches. How many inches did the plant grow that was given 6 tablespoons of fertilizer?

The bean plant grew 30 inches.

Step 1	Let f stand for the number of tablespoons of fertilizer.	Choose any letter or symbol for the variable.
Step 2	Then express the number of inches as $5 \times f$. or $5 \bullet f$ or $5 f$	You read all these expressions as "5 times f ".
Step 3	$5 f$ 5×6 30	Simplify the expression.

Solution: The bean plant that was given 6 tablespoons of fertilizer grew 30 inches.

Write an algebraic expression for each word phrase.
Use the variable \boldsymbol{n} to represent the unknown number.

1. Four times a number plus eight.
2. Nine times a number divided by three.

Evaluate each expression when $x=7$ and $d=9$.
5. $2 x+14$
6. $(5 \times 3)+5 x$
7. $d^{2}+11$
8. $7 x-12$

Spiral Review (Chapter 3, Lesson 5) NS 1.1
Round each number to the nearest hundred.
9. 3,678
10. 308,425
11. $47,830.45$
12. $104,370.30$

Write and Evaluate Expressions

Solve problems 1-6.

1. Chad did his homework in 10 minutes on Monday. On Tuesday it took him twice as long to do his homework as it did on Monday. Write an expression to show how long it took Chad to do his homework both nights.
2. Amanda checked out 7 fiction books from the library. She also checked out three times as many non-fiction books. The next day, Amanda returned 5 books to the library. How many books does she have now? Write an expression to explain your answer.
3. Heather is twice as old as Natalie. Abby is 3 years younger than Heather. If Natalie is x years old, how old is Abby? Find Abby's age and Heather's age when $x=9$. Write expressions to solve. Write the girls' names in order from the oldest to the youngest.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4. Frank is 3 years less than twice as old as Brad. If Brad is 5, write an expression to show Frank's age.
5. Nicole jumped rope for 5 minutes on Monday. On Tuesday she jumped twice as long as she did on Monday. On Wednesday, she jumped 8 minutes longer than she did on Monday. How many minutes did Nicole spend jumping rope all together? Write an expression to explain your answer.
6. Travis wrote the following expression to show that his sister's age is 5 years less than twice his age. Explain what he did wrong. Give the correct expression.
Let a stand for my age.
My sister's age: $a \div 2-5$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Write and Solve Equations

Use inverse operations to solve equations.

Example 1:

Subtraction is the inverse of addition.
$x+12=25$
$x+12-12=25-12$
$x+0=13$
Solution: $x=13$

Example 2:

Division is the inverse of multiplication.
$4 x=36$
$4 x \div 4=36 \div 4$
$1 \times x=9$
Solution: $x=9$

Solve and check.

1. $r-45=17$
2. $44=4 f$
3. $k+16=30$
4. $a-12=8$
5. $7 y=42$
6. $c-30=27$
7. $81=9 v$
8. $b+15=75$

Choose the equation that represents the situation. Then use the equation to solve the problem.
9. Jenni and her friend were having lunch. The bill came to $\$ 17$. She gave the waiter $\$ 21$ including tip. How much was the tip?
A $\$ 17+n=\$ 21$
B $\$ 21+n=\$ 17$

Spiral Revicw (Chapter 4, Lesson 1) KEY NS 1.5

Write each decimal as a fraction. Simplify your answers.
10. 0.25
11. 0.6
12. Rebecca's scout troop went camping. Some of the scouts went canoeing and 0.4 of the scouts went horseback riding. Write 0.4 as a fraction. Simplify.

Write and Solve Equations

Solve problems 1-6.

1. Sam spent $\$ 14$ at the concession stand. His drink cost $\$ 3$. How much did he spend on other items? Choose the equation that represents the situation. Then use the equation to solve the problem.

A $\$ 14-\$ 3=\$ 11$
B $\$ 14+\$ 3=\$ 17$
\qquad
\qquad
3. Rosie had $\$ 20$ before she went to the movies. After the movies she had $\$ 7$. How much money did she spend at the movies? Write an equation and solve.
\qquad
\qquad
5. Explain how to find the value of y in the expressions below.
$5+y \times 6=29$
$2 y+12=20$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. Karen skated around the ice skating rink a total of 10 times. Every two laps took her 1 minute. How many minutes did she skate? Choose the equation that represents the situation. Then use the equation to solve the problem.

A $10+2=12$ minutes
B $10 \div 2=5$ minutes
4. Lianna treated 3 of her friends and herself to ice cream sundaes. The bill for the sundaes was $\$ 16$. Each sundae cost the same amount. How much did Lianna pay for each sundae? Write an equation and solve.
\qquad
\qquad
6. Jess says the square of the sum of 17 plus some number will equal his mother's age squared. If Jess' mother's age squared is 2209 , what number must be used to make the equation true?

$$
(17+a)^{2}=2,209
$$

\qquad
\qquad

Joe made the pattern below out of counters. Look at the pattern. Write the rule.
How many squares will there be in Figure 8?

Figure 1

Figure 2
Way 1 Use words.
The number of counters is 2 times the figure number plus one.

Figure 3

Figure 4

$$
\begin{array}{ll}
\text { Way } 2 \text { Use one variable. } & \text { Way } 2 \begin{array}{l}
\text { Use an equation } \\
\text { with two variables. }
\end{array} \\
\begin{array}{ll}
x \text { is the input or the figure }
\end{array} & \begin{array}{l}
y=2 x+1
\end{array} \\
\text { number. } & y=(2 \times 8)+1 \\
2 x+1 \text { is the output or the } & \begin{array}{l}
y=16+1
\end{array} \\
\text { number of counters. } & \begin{array}{l}
y=17
\end{array} \\
\text { Rule: Output }=2 x+1 &
\end{array}
$$

Solution: Figure 8 will have $(2 \times 8)+1$, or 17 squares.

Use the function table. Read the equation. Then, find the value of y for the given value of \boldsymbol{x}.

1. $y=14-x$
2. $y=7 x$

x	0	1	2	3
y	-			

x	0	1	2	3
y				

Spiral Review (Chapter 4, Lesson 3) KEY NS 1.5

Compare. Write $>,<$, or $=$ for each \square
3. $\frac{1}{4} \bigcirc 0.5$
4. $\frac{2}{3} \bigcirc 0.25$
5. Hilda has 1.05 bags of candy. Is 1.05 greater than, less than, or equal to $\frac{1}{2}$? \qquad
\qquad

Variables and Functions

Solve problems 1-6.

1. Tyler collects coins. If each hour at the coin show he buys 5 new coins, how many coins will he have after 4 hours? Complete and use the function table to find the answer.

x	1	2	3	4
y	5	10		

3. Tracy's pay is described by the rule $y=8 x$, where y represents the amount of pay in dollars and x represents the number of hours she worked. How much money does Tracey earn if she works 6 hours? Complete and use the function table to find the answer.

Number of hours worked	1	2	4	6
Pay per hour				

5. A family traveled 175 miles each day of their 5 day vacation. How many more days would they need to travel to have driven over 2,000 miles? How many days would they have to travel in all?

Problem Solving: Write an Expression

Write an expression to solve each problem. Simplify.

Fragrant Flowers sells fresh flowers wrapped in bouquets. Each bouquet is \$7. If a customer buys 3 bouquets, the owner of the store will discount the total price by $\$ 5$. How much does it cost to buy 3 bouquets?

Step 1 What operation will I use to solve this problem?

- "Buys 3 bouquets" indicates multiplication
- "Discount the total price" indicates subtraction pubtraction

Step 3 Should I use parentheses in my expression?
Hint: You can write the expression 2 ways.

- $(3 \times p)-5$
- $3 p-5$

Solution:
$(3 \times p)-5$
$(3 \times \$ 7)-5$
\$21-5
\$16

Write an expression to solve each problem. Simplify.

1. Yu Min made brownies for school. After cutting the brownies into equal pieces, Yu Min gave 4 to her brother, and she split the remaining brownies with her mathematics teacher and her art teacher. If she had 24 brownies, how many brownies did each of the two teachers receive?
2. The force of gravity on the moon is $\frac{1}{6}$ of the earth's gravity. Therefore, an item on the moon will weigh $\frac{1}{6}$ of what that item weighs on earth. If a tool weights 72 pounds on earth, how much does it weigh on the moon?

Spird Review (Chapter 4, Lesson 3) KEY NS 1.5

Compare. Write $>,<$, or $=$ for each

3.
 0.7
4. $\frac{4}{15} \bigcirc$ 0.12
5. Jamie had $\frac{5}{6}$ of her mathematics quiz correct. On her science quiz she had 0.7 of the questions correct. On which quiz did Jamie receive a better score? \qquad

Problem Solving: Write an Expression

CA Standards

 UEY AF 1.2, MR 2.4
Write an expression to solve each problem.

1. At the Cupcake Factory, Ramon buys one large chocolate cupcake for $\$ 2.50$ and spends 6 times as much on lemon cupcakes. How much does Ramon spend on cupcakes?
2. John spent 5 more hours working on his science fair project than Hannah. Abigail spent twice as long as John. If Hannah spent 19 hours on her project, how long did it take Abigail to complete her project?
3. Noreen makes clay pottery. On Saturday, she had 15 pottery vases. On Sunday, she made 5 more, and on Monday, she sold half of the total number of vases. By Wednesday, she had sold 3 more vases, and had made 5 more. How many vases did she have by the end of the day on Wednesday?
